6 things to know about 13C NMR

1. Signals weak (μ is 25% of 1H & only 1% abundant)
2. Signals almost always singlets:
 - no C-C splittings because 99% of neighbors are 12C
 - no C-H splittings due to “decoupling”
3. Large chemical shift range (0 to 230 ppm)
 - sp3 and sp C are 0 – 100 ppm
 - sp2 C are 100 – 230 ppm (C=O above 165 ppm, C=C below 165 ppm)
4. Integrations are unreliable, but ...
 - peak due to 2 equiv. carbon usually = 2x higher
 - C not bound to H (quaternary C = 4° C) are small (≈ 30 – 50% height)
5. DEPT (distortionless enhanced polarization transfer) give # of attached H:
 - DEPT 90 – see ONLY CH (3°)
 - DEPT 135 – CH (3°) and CH$_3$ (1°) are upright, CH$_2$ (2°) are upside down
6. “Accidental” peak overlap very rare → # of peaks = # of unique C atoms.
 - Using DEPTs → # of unique C atoms of each type (1°, 2°, 3° or 4°).

13C NMR spectrum of tert-butyl acetate

[Diagram showing the NMR spectrum of tert-butyl acetate with peaks labeled a, b, c, d, and integration notes]

DEPT experiments can be used to identify resonances as due to C, CH, CH$_2$ or CH$_3$ (4°, 3°, 2° or 1° C).

The boxed parts of DEPT spectra were simulated (they were cut off in the published source).

Source: http://www.chem.ox.ac.uk/spectroscopy/nmr/PDFs/Organic NMR 1.pdf

13C NMR of cholesterol acetate (and showing how ChemDraw can predict the spectrum)

Chemical shift predictions from ChemDraw

from Duckett and Gilbert

Fig. 5.23 13C n.m.r. spectrum (fully decoupled) of cholesterol acetate
NMR structure problem: C, 54.53; H, 9.15; O, 36.32. Name that compound (using 1H and 13C NMR)

Empirical formula
C₄H₈O₂

Identifying an unknown from NMR spectrum: example from http://www.chem.ucla.edu/~webspectra/

Elemental Analysis: C, 70.6%; H, 5.9%; O, 23.5%
Empirical Formula: C₄H₄O

1H NMR spectrum

13C NMR spectrum
CDCl₃ (77 ppm)
Expect predictions to be within ca. 0.3 ppm

ortho: 8.07
meta: 7.72

7.77
7.72

7.27 error avg 0.3 max 0.3
7.62 error avg 0.3 max 0.7